42 research outputs found

    Min-max Decoding Error Probability Optimization in RIS-Aided Hybrid TDMA-NOMA Networks

    Full text link
    One of the primary objectives for future wireless communication networks is to facilitate the provision of ultra-reliable and low-latency communication services while simultaneously ensuring the capability for vast connection. In order to achieve this objective, we examine a hybrid multi-access scheme inside the finite blocklength (FBL) regime. This system combines the benefits of non-orthogonal multiple access (NOMA) and time-division multiple access (TDMA) schemes with the aim of fulfilling the objectives of future wireless communication networks. In addition, a reconfigurable intelligent surface (RIS) is utilized to facilitate the establishment of the uplink transmission between the base station and mobile devices in situations when impediments impede their direct communication linkages. This paper aims to minimize the worst-case decoding-error probability for all mobile users by jointly optimizing power allocation, receiving beamforming, blocklength, RIS reflection, and user pairing. To deal with the coupled variables in the formulated mixed-integer non-convex optimization problem, we decompose it into three sub-problems, namely, 1) decoding order determination problem, 2) joint power allocation, receiving beamforming, RIS reflection, and blocklength optimization problem, and 3) optimal user pairing problem. Then, we provide the sequential convex approximation (SCA) and semidefinite relaxation (SDR)-based algorithms as potential solutions for iteratively addressing the deconstructed first two sub-problems at a fixed random user pairing. In addition, the Hungarian matching approach is employed to address the challenge of optimizing user pairing. In conclusion, we undertake a comprehensive simulation, which reveals the advantageous qualities of the proposed algorithm and its superior performance compared to existing benchmark methods.Comment: 11 pages, 7 figure

    Trajectory Optimization and Phase-Shift Design in IRS Assisted UAV Network for High Speed Trains

    Full text link
    The recent trend towards the high-speed transportation system has spurred the development of high-speed trains (HSTs). However, enabling HST users with seamless wireless connectivity using the roadside units (RSUs) is extremely challenging, mostly due to the lack of line of sight link. To address this issue, we propose a novel framework that uses intelligent reflecting surfaces (IRS)-enabled unmanned aerial vehicles (UAVs) to provide line of sight communication to HST users. First, we formulate the optimization problem where the objective is to maximize the minimum achievable rate of HSTs by jointly optimizing the trajectory of UAV and the phase-shift of IRS. Due to the non-convex nature of the formulated problem, it is decomposed into two subproblems: IRS phase-shift problem and UAV trajectory optimization problem. Next, a Binary Integer Linear Programming (BILP) and a Soft Actor-Critic (SAC) are constructed in order to solve our decomposed problems. Finally, comprehensive numerical results are provided in order to show the effectiveness of our proposed framework.Comment: This paper has been submitted to IEEE Wireless Communications Letter

    Swin Transformer-Based Dynamic Semantic Communication for Multi-User with Different Computing Capacity

    Full text link
    Semantic communication has gained significant attention from researchers as a promising technique to replace conventional communication in the next generation of communication systems, primarily due to its ability to reduce communication costs. However, little literature has studied its effectiveness in multi-user scenarios, particularly when there are variations in the model architectures used by users and their computing capacities. To address this issue, we explore a semantic communication system that caters to multiple users with different model architectures by using a multi-purpose transmitter at the base station (BS). Specifically, the BS in the proposed framework employs semantic and channel encoders to encode the image for transmission, while the receiver utilizes its local channel and semantic decoder to reconstruct the original image. Our joint source-channel encoder at the BS can effectively extract and compress semantic features for specific users by considering the signal-to-noise ratio (SNR) and computing capacity of the user. Based on the network status, the joint source-channel encoder at the BS can adaptively adjust the length of the transmitted signal. A longer signal ensures more information for high-quality image reconstruction for the user, while a shorter signal helps avoid network congestion. In addition, we propose a hybrid loss function for training, which enhances the perceptual details of reconstructed images. Finally, we conduct a series of extensive evaluations and ablation studies to validate the effectiveness of the proposed system.Comment: 14 pages, 10 figure

    Joint Trajectory and Resource Optimization of MEC-Assisted UAVs in Sub-THz Networks: A Resources-based Multi-Agent Proximal Policy Optimization DRL with Attention Mechanism

    Full text link
    THz band communication technology will be used in the 6G networks to enable high-speed and high-capacity data service demands. However, THz-communication losses arise owing to limitations, i.e., molecular absorption, rain attenuation, and coverage range. Furthermore, to maintain steady THz-communications and overcome coverage distances in rural and suburban regions, the required number of BSs is very high. Consequently, a new communication platform that enables aerial communication services is required. Furthermore, the airborne platform supports LoS communications rather than NLoS communications, which helps overcome these losses. Therefore, in this work, we investigate the deployment and resource optimization for MEC-enabled UAVs, which can provide THz-based communications in remote regions. To this end, we formulate an optimization problem to minimize the sum of the energy consumption of both MEC-UAV and MUs and the delay incurred by MUs under the given task information. The formulated problem is a MINLP problem, which is NP-hard. We decompose the main problem into two subproblems to address the formulated problem. We solve the first subproblem with a standard optimization solver, i.e., CVXPY, due to its convex nature. To solve the second subproblem, we design a RMAPPO DRL algorithm with an attention mechanism. The considered attention mechanism is utilized for encoding a diverse number of observations. This is designed by the network coordinator to provide a differentiated fit reward to each agent in the network. The simulation results show that the proposed algorithm outperforms the benchmark and yields a network utility which is 2.22%2.22\%, 15.55%15.55\%, and 17.77%17.77\% more than the benchmarks.Comment: 13 pages, 12 figure

    Ruin Theory for User Association and Energy Optimization in Multi-access Edge Computing

    Full text link
    In this letter, a novel framework is proposed for analyzing data offloading in a multi-access edge computing system. Specifically, a two-phase algorithm, is proposed, including two key phases: \emph{1) user association phase} and \emph{2) task offloading phase}. In the first phase, a ruin theory-based approach is developed to obtain the users association considering the users' transmission reliability. Meanwhile, in the second phase, an optimization-based algorithm is used to optimize the data offloading process. In particular, ruin theory is used to manage the user association phase, and a ruin probability-based preference profile is considered to control the priority of proposing users. Here, ruin probability is derived by the surplus buffer space of each edge node at each time slot. Giving the association results, an optimization problem is formulated to optimize the amount of offloaded data aiming at minimizing the energy consumption of users. Simulation results show that the developed solutions guarantee system reliability under a tolerable value of surplus buffer size and minimize the total energy consumption of all users.Comment: This paper has been submitted to IEEE Wireless Communications Letter

    SpaceRIS: LEO Satellite Coverage Maximization in 6G Sub-THz Networks by MAPPO DRL and Whale Optimization

    Full text link
    Satellite systems face a significant challenge in effectively utilizing limited communication resources to meet the demands of ground network traffic, characterized by asymmetrical spatial distribution and time-varying characteristics. Moreover, the coverage range and signal transmission distance of low Earth orbit (LEO) satellites are restricted by notable propagation attenuation, molecular absorption, and space losses in sub-terahertz (THz) frequencies. This paper introduces a novel approach to maximize LEO satellite coverage by leveraging reconfigurable intelligent surfaces (RISs) within 6G sub-THz networks. The optimization objectives encompass enhancing the end-to-end data rate, optimizing satellite-remote user equipment (RUE) associations, data packet routing within satellite constellations, RIS phase shift, and ground base station (GBS) transmit power (i.e., active beamforming). The formulated joint optimization problem poses significant challenges owing to its time-varying environment, non-convex characteristics, and NP-hard complexity. To address these challenges, we propose a block coordinate descent (BCD) algorithm that integrates balanced K-means clustering, multi-agent proximal policy optimization (MAPPO) deep reinforcement learning (DRL), and whale optimization (WOA) techniques. The performance of the proposed approach is demonstrated through comprehensive simulation results, exhibiting its superiority over existing baseline methods in the literature
    corecore